147 research outputs found

    Compatibility of quantum measurements and inclusion constants for the matrix jewel

    Full text link
    In this work, we establish the connection between the study of free spectrahedra and the compatibility of quantum measurements with an arbitrary number of outcomes. This generalizes previous results by the authors for measurements with two outcomes. Free spectrahedra arise from matricial relaxations of linear matrix inequalities. A particular free spectrahedron which we define in this work is the matrix jewel. We find that the compatibility of arbitrary measurements corresponds to the inclusion of the matrix jewel into a free spectrahedron defined by the effect operators of the measurements under study. We subsequently use this connection to bound the set of (asymmetric) inclusion constants for the matrix jewel using results from quantum information theory and symmetrization. The latter translate to new lower bounds on the compatibility of quantum measurements. Among the techniques we employ are approximate quantum cloning and mutually unbiased bases.Comment: v5: section 3.3 has been expanded significantly to incorporate the generalization of the Cartesian product and the direct sum to matrix convex sets. Many other minor modifications. Closed to the published versio

    Maximal violation of steering inequalities and the matrix cube

    Full text link
    In this work, we characterize the amount of steerability present in quantum theory by connecting the maximal violation of a steering inequality to an inclusion problem of free spectrahedra. In particular, we show that the maximal violation of an arbitrary unbiased dichotomic steering inequality is given by the inclusion constants of the matrix cube, which is a well-studied object in convex optimization theory. This allows us to find new upper bounds on the maximal violation of steering inequalities and to show that previously obtained violations are optimal. In order to do this, we prove lower bounds on the inclusion constants of the complex matrix cube, which might be of independent interest. Finally, we show that the inclusion constants of the matrix cube and the matrix diamond are the same. This allows us to derive new bounds on the amount of incompatibility available in dichotomic quantum measurements in fixed dimension.Comment: Slightly generalized Lemma 2.3 and Theorem 3.

    Position-based cryptography: Single-qubit protocol secure against multi-qubit attacks

    Get PDF
    While it is known that unconditionally secure position-based cryptography is impossible both in the classical and the quantum setting, it has been shown that some quantum protocols for position verification are secure against attackers which share a quantum state of bounded dimension. In this work, we consider the security of two protocols for quantum position verification that combine a single qubit with classical strings of total length 2n2n: The qubit routing protocol, where the classical information prescribes the qubit's destination, and a variant of the BB84-protocol for position verification, where the classical information prescribes in which basis the qubit should be measured. We show that either protocol is secure for a randomly chosen function if each of the attackers holds at most n/2−5n/2 - 5 qubits. With this, we show for the first time that there exists a quantum position verification protocol where the ratio between the quantum resources an honest prover needs and the quantum resources the attackers need to break the protocol is unbounded. The verifiers need only increase the amount of classical resources to force the attackers to use more quantum resources. Concrete efficient functions for both protocols are also given -- at the expense of a weaker but still unbounded ratio of quantum resources for successful attackers. Finally, we show that both protocols are robust with respect to noise, making them appealing for applications.Comment: 26 pages, 4 figures. Content significantly expanded. In particular, we have added the function BB84 protocol and prove its security in Section 4. Finally, we give lower bounds for concrete functions in Section

    Continuity of quantum entropic quantities via almost convexity

    Full text link
    Based on the proofs of the continuity of the conditional entropy by Alicki, Fannes, and Winter, we introduce in this work the almost locally affine (ALAFF) method. This method allows us to prove a great variety of continuity bounds for the derived entropic quantities. First, we apply the ALAFF method to the Umegaki relative entropy. This way, we recover known almost tight bounds, but also some new continuity bounds for the relative entropy. Subsequently, we apply our method to the Belavkin-Staszewski relative entropy (BS-entropy). This yields novel explicit bounds in particular for the BS-conditional entropy, the BS-mutual and BS-conditional mutual information. On the way, we prove almost concavity for the Umegaki relative entropy and the BS-entropy, which might be of independent interest. We conclude by showing some applications of these continuity bounds in various contexts within quantum information theory.Comment: 68 pages, 6 figure

    A Machine Learning Approach for Automated Fine-Tuning of Semiconductor Spin Qubits

    Full text link
    While spin qubits based on gate-defined quantum dots have demonstrated very favorable properties for quantum computing, one remaining hurdle is the need to tune each of them into a good operating regime by adjusting the voltages applied to electrostatic gates. The automation of these tuning procedures is a necessary requirement for the operation of a quantum processor based on gate-defined quantum dots, which is yet to be fully addressed. We present an algorithm for the automated fine-tuning of quantum dots, and demonstrate its performance on a semiconductor singlet-triplet qubit in GaAs. The algorithm employs a Kalman filter based on Bayesian statistics to estimate the gradients of the target parameters as function of gate voltages, thus learning the system response. The algorithm's design is focused on the reduction of the number of required measurements. We experimentally demonstrate the ability to change the operation regime of the qubit within 3 to 5 iterations, corresponding to 10 to 15 minutes of lab-time
    • 

    corecore